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Abstract. Soliton excitations in a one-dimensional Heisenberg ferromagnet are studied by 
means of the Holstein-Primakoff representation. Writing the Hamiltonian and the equation 
of motion into dimensionless forms, we show that the relative ratio of E to q is important for 
the determination of the modified terms of the non-linear Schrodinger equation; 
E = 1 / f l ( S  is the spin length) is the small dimensionless parameter usedin the semiclassical 
approximationand q = a/A,,(aisthelatticespaceandA,is thecharacterisicwavelengthofthe 
excitations) is another small dimensionless parameter used in the long-wave approximation. 
The soliton solutions are given in three cases (q = O(E) ,  q = O(E”*) and 17 = O(E2)) which 
correspond to the different physical conditions of the system. The results obtained by 
Pushkarov and Pushkarov, de Azevedo etal and Skrinjar etal are included in our approach. 

1. Introduction 

In recent years, there has been considerable interest shown in the study of non-linear 
excitations in a one-dimensional (ID) Heisenberg ferromagnet. Using the classical 
approach, Tjon and Wright (1977) obtained single-soliton solutions in the continuum 
limit of the Hamiltonian. With use of a gauge transformation, Zakharov and Takh- 
tadzhyan (1979) have proved the gauge equivalence of the Heisenberg chain and the non- 
linear Schrodinger system. In the semiclassical approach of Pushkarov and Pushkarov 
(1977), the non-linear Schrodinger equation was obtained from the expansion of the 
Holstein-Primakoff (HP) (1940) transformation. Since the single-soliton solutions are 
different from those found using classical approach, de Azevedo et a1 (1982) argued that 
the non-linear terms in the calculations of Pushkarov and Pushkarov were not taken into 
account properly in obtaining the equation of motion. They gave a ‘consistent’ treatment 
and derived a modified non-linear Schrodinger equation. The anisotropic Heisenberg 
chain was discussed in a similar way by Skrinjar et a1 (1987). Soliton excitations in the 
anisotropic case in the classical limit have also been investigated (Skrinjar et a1 1989). 

All studies made so far on soliton excitations in a ID Heisenberg ferromagnet in 
the HP representation of spin operators are based on two approximations: one is the 
semiclassical approximation which takes l / d S  (S is the spin length) as the small par- 
ameter and the other is the long-wave limit in which the coherent amplitudes a,, are 
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expanded to a2-terms (a is the lattice constant). The two approximations are thought to 
be independent of each other. Since two small parameters arise in the perturbation 
expansion, we think that the approach must be used carefully. The aim of this paper is 
to show that the relative ratio of E to q is important for the determination of the modified 
terms of the non-linear Schrodinger equation; E = l / q T  is the dimensionless small 
parameter used in the semiclassical approximation and q = a/Ao (A, is the typical wave- 
length of the waves) is another dimensionless small parameter used in the long-wave 
limit. The relation between E and q ,  from our point of view, should be determined by 
the corresponding physical conditions of the system. The soliton solutions are discussed 
inthreecases: q = O(E) ,  q = O ( E ~ ’ ~ )  and q = O ( E ~ ) .  The resultsobtained by Pushkarov 
and Pushkarov, de Azevedo et a1 and Skrinjar et a1 can be included in our approach. A 
comparison between the theory of non-linear long waves in shallow water and our theory 
is given in section 5 .  

2. The model Hamiltonian, the HP representation and the semiclassical approximation 

We consider an anisotropic Heisenberg chain in an external fieldf, whose Hamiltonian 
can be put into the form 

J J 
H - Ho = - p f E  (S; - Sh)  - -E (Si - Si+s - S 2 h 2 )  - - z E (Sfsf+;, - S2h2)  (1) 

I 2 i.6 2 i , &  

where Si denotes the spin of the ith ion, J is the exchange integral, z the dimensionless 
anisotropic parameter, p the magnetic moment, h the Planck constant divided by 2n 
and 6 = k 1. If we define si = S ;/h and 3: = t- is{, equation (1) can be written in 
the dimensionless form 

s:s,, + S;S;+, + 2(1 + z) (SfP 
S 2  a 

J S 2 f i 2  I .  6 

- H - H o  Sf - s  H=-- 

where f = pf/JSh is the dimensionless external field. s: , S ;  and Sf satisfy the com- 
mutation relations 

with si - Si = S(S + 1). Then we can introduce the HP (1940) representation for spin 
operators: 

s: = (2s - a:ai)”2 a; 

$7 = a f (2S  - a:ai)lm 

( 5 )  

(6) 

s; = s - a:a;. (7) 
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ai  and a: satisfy the Bose commutation relations 

[ U i ,  u t ]  = 6, [ U i ,  a,] = [a : ,  ai’] = 0. (8) 

If 2s 9 U: a , ,  we can use the semiclassical approximation 

S:/s = V ‘ ~ [ E U ,  - ~ E ~ u : u , u ,  - ~ E ~ ~ : ~ ~ ~ : ~ ~ ~ ~  + 0(&7)]  

SJS = f i [Ea:  - aE3a:a:al - B ~ ~ ~ : ~ : ~ , ~ : ~ ,  + o ( & ~ ) ]  
(9)  

(10) 

where E = l / f i  is a small dimensionless parameter. Then (2) can be written in a power 
series of E :  

E i =  &(fC a:ai + 4 [ ( l  + z)(a:a;  + a:+&+6) - aia:+s - ui+6u:l) 
I i .  s 

where HC represents the corresponding Hermitian conjugate term. The Heisenberg 
equation of motion for the operator a, given by 

can be written in the dimensionless form 

where = coot is the dimensionless time and h0 = hwo/JS2h2 (coo is the typical frequency 
of the waves). Substituting (11) into (13), we have 

i soaa j /a i  = E’ [f + 2(1+ z>laj - 2 aj+6 i 6 

+ a:+6a]+6a]+s + a:+6a,a, 

- 4a:+sa:a,+6a1+6a, - 2a:+6a:+6a,ap,+d + W).  (14) 

This is the equation of motion for a, in the semiclassical expansion. 



8358 G Huang et a1 

3. Glauber’s coherent-state representation and the long-wave approximation 

Introducing Glauber’s (1963) coherent-state representation 

I @ )  = n la;) a, 1 a) = aj I a) 
I 

with ( a  1 a) = 1, equation (14) transforms into 

The next step is to perform the continuum limit 

where a is the lattice constant, 2 = x/A,  and q = a/Au. A” is the typical wavelength of the 
waves (in the case of soliton excitation, Au will be the soliton width) and q is the 
dimensionless small parameter used in the long-wave approximation. Then equation 
(16) becomes 

ido aa/ai= ~ ~ [ ( f +  2 r ) a  - q2agf - &q4a,, + 0(q6)]  

+ E 4 { - 2 r / a i 2 2 + + * [ - a / a i 1 2 - ~ a 2 a ~ ,  +iayaiy 
- z a ( ~  a12),,~ + o(V4)) + E y i ~  ay/2 a + o(q2)1+ o (&SI. (20) 

All quantities in equation (20) are dimensionless. Here E and q ,  which are two small 
expansion parameters used in the semiclassical approximation and in the long-wave 
approximation, are written explicitly. 

4. The soliton solutions 

For a given physical system, E and q are not independent of each other and can be 
determined from typical quantities of the system. That is to say, 7 = g(E) (g is a function 
of E). Theoretically, we could not determine which case is important because different 
cases correspond to different physical pictures. Only from the experimental conditions 
and initial exciting conditions, can we estimate which case is suitable. The reason is 
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similar to the theory of non-linear long waves in shallow water (Ablowitz and Segur 
1981) which will be discussed in section 5 .  Here we discuss the soliton solutions in three 
cases: r ]  = O(E),  11 = O(e3I2) and 11 = O ( E ~ ) .  

4.1. The case r ]  = O(E) 

We let r ]  = U l e ,  with U 1  = O(1). If t # 0, we retain terms up to O(.z4) order in equation 
(20) in order to include the lowest-order non-linear effect. Then we have 

ia, = (pf+ 2 t ~ S , ) a  - JS,U~LY, ,  - (2~S,z/S)l  ai2 a (21) 
on returning to dimensional variables (we have assumed that Sh = S,). Equation (21) is 
the non-linear Schrodinger equation obtained firstly by Pushkarov and Pushkarov (1977) 
in the HP representation. If z > 0, (21) admits the envelope soliton solution 

(22) 
with 

where v ,  xo  and qo are integral constants. Here 1 /v  (the soliton width) and o (the 
vibrating frequency of the soliton) can be thought of as the typical length L o  and the 
typical frequency w o  used in equations (13)-(20). The multiple-soliton solutions may be 
obtained by the inverse scattering transform (Ablowitz and Segur 1981). However, 
when z = 0 (the isotropic case), (21) is not valid for describing non-linear excitations of 
the system (from the solution (22) we can also see that this is true). We must retain the 
terms in (20) up to O ( E ~ ) :  
ia, = p f a  - J S ~ U ~ ~ , ,  - ~ a 4 ~ S c a , x x x  + (JS,/4S2) 1 ai2 CY 

a = ( S U ~ / T ) ' / ~ V  sech v ( x  - xo  + 2JS,a2kt) exp[i(kx - wt - qO)] 

w = pf+ ~ z J S ,  + JSCa2(v2 - k2)  (23) 

+ ( a 2 J S c / S ) [ - a (  a, 12 + ia*(a,)2 - fa2a,*,] (24) 
on returning to dimensional variables. Since this contains the fourth-order derivative 
term a,,,, , it is difficult to obtain exact solitary-wave solutions. In the appendix, we use 
the method of multiple scales (Taniuti and Nishihara 1983) to reduce (24) to the non- 
linear Schrodinger equation 

with 
iU, -+ a2JS,(1 - a2k2/2)UEE + [JS,(a2k2 - 1/4S)/S]I U12 U = 0 (25) 

a = pa( ' )  + O(p2) (26) 
a(') = U(E,  t) exp[i(kx - wt) ]  (27) 
w = p f  + a2JS,k2 - JS,a4k4/12 (28) 

E = P ( X  - c,t> (29) 

t = p2t (30) 
where k is the wavenumber and C ,  = dw/dk is the group velocity of the linear wave. p 
is a small parameter denoting the relative amplitude of the waves. The single-soliton 
solution is 

U = [2a2S(1 - a2k2/2)/(2z + a2k2 - 1/4S)]"2 2v 

x sech(2v) [ E  - CO + 4/3a2JS,(1 - a2k2/2)z] 

x exp[-2i/?g - 4i(P2 - v2)a2JS,(1 - a2k2/2) t  - iq,] 

where /3, v and Eo are integral constants. 
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4.2. The case q = O ( E ~ I ~ )  

This corresponds to longer waves. We let q = U 2 ~ 3 / 2  with U 2  = O(1). If the terms in (20) 
are retained up to O(E’),  we have 

ia ,  = (pf+ 2 t J S c ) a  - ~ S , u ~ a , ,  + [(JSc/4S2) - 2JScz/S] 1 ai2 a 
+ (u2JSc/S)[-aIa,12 + kY*(a,)2 - ta2a,, - z(Y(/al2)*,] (32) 

on returning to dimensional variables. If t = 0, it is the same as the equation obtained 
by de Azevedo et a1 (1982) (the term (JSc/4S2) I a/’ a is missing in their paper). The 
single-soliton solutions which are identical with those of Tjon and Wright (1977) have 
been given by them. We refer readers to the paper of de Azevedo et a1 (1982). 

4.3. The case q = O(E’) 

This corresponds to even longer waves. We let q = U 3 ~ 2  with U3 = O(1). The equation 
including the lowest-order non-linear term is 

i a l  = (pf+ 2JS,t)a - JSca2axx - [JSc(2z - 1/4S2)/S] I ai2 a (33) 

on returning to dimensional variables. The single-soliton solution is 

a(x ,  t )  = [8S2u2 / (8S t  - 1)]’12 2 v  sech[2v(x - x o  + 4PJSci/S)I 

x exp[-2ipx - 4i(P2 - v2)JSct/S - i (pf+ 2tJSc)t - iq,] (34) 

where P, v ,  xO and qo are integral constants. Equation (33) admits the envelope soliton 
solution (34) only when 8Sz > 1. If 8St = 1, (33) is not valid for describing non-linear 
effects of the system since the non-linear term in (33) vanishes. In this case, we must 
include the higher-order terms in (20). 

5. Discussion and summary 

We have investigated soliton excitations in the ID Heisenberg chain. From the above we 
can see that the relative ratio of E to q is important for determining the modified 
terms of the equation of motion in the semiclassical approximation and the long-wave 
approximation. This is an example of Kruskal’s (1963) ‘principle of maximal balance’, 
which states that in a perturbation expansion involving two or more small parameters a 
scaling which reduces the problem as little as possible is of interest. 

Skrinjar et a1 discussed the non-linear excitations in the Heisenberg chain using the 
model Hamiltonian (1). In their approach, the continuum limit (long-wave approxi- 
mation) was used by keeping the derivative terms to the order u2 a2/dx2, and in the 
semiclassical approximation they retained terms up to products of six Bose operators 
(Skrinjar et a1 1987) or the complete series of the expansions of the HP transform- 
ation (Skrinjar et a1 1989). Since a comparison between the orders of the semiclassical 
approximation and the long-wave approximation was not taken into account, there is a 
little confusion in their calculations. 
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In Glauber’s coherent-state representation, the Hamiltonian (1) can be written as 

( a l ( H  - H,)/cY)  = J S 2 h 2 ( ~ l / l / )  (35) 

(~~181 CY) = - dx %(x, t )  = a ‘I 
% =  E 2 { ( f +  22)(a l2  + $q2[(1 + z)(lCY12)ff - CYay*- x x  - a*CY--1 xx  

where E ,  q and i are defined as above. In our framework, the discussions of Skrinjar et 
a1 (1987,1989) can be thought of as taking the Hamiltonian to be one in which all O(q4) 
terms in (37) are neglected and then q = 0(1 )  is employed. 

We now use the development of the theory of non-linear long waves in shallow water 
to support our approach given above. In the dimensionless form of the Euler equations, 
there are two small parameters 

E = A / h  p = kh (38) 

where A is the typical amplitude of the waves, h is the static depth of water, k = 2n/ 
A ,  A is a typical wavelength, E is the small parameter used in the weak-amplitude 
approximation and p is the small parameter used in the long-wave approximation 
(Ablowitz and Segur 1981). Historically, there had been two kinds of non-linear shallow- 
water wave theories: one was the Airy theory which corresponds to 

E = O(1) y < l  (39) 

and the other was the Boussinesq-Korteweg-de Vries theory which takes 

E = O(p2) e 1. (40) 

The two theories gave quite different results. This paradox was not solved until 1953 
(Urselll953). Ursell pointed out that the relative ratio of E to ,U is very important when 
making the perturbation expansion of the Euler equations. Different ratios correspond 
to different physical conditions. The number 

Ur = E / P ~  = AA2/(27c)3h3 (41) 

is now called the Ursell number. 
It should be pointed out that in our approach only the parameters E = l/<S and q = 

a/& are assumed to be small quantities. The other dimensionless parameters z, f and 
a (a=   CY,^/,,,, where aj are the coherent amplitudes) have been thought to be of 
O(1). From the mathematical point of view, the semiclassical approximation and small- 
amplitude approximation are not the same, because S is the characteristic quantity of 
the system whereas a is determined by the external exciting conditions. We can also let 
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E ,  q and U be small parameters and make another perturbation expansion. This can be 
done by defining U ,  = ad, in the Hamiltonian (1 1). Then (11) becomes 

+ ( E U ) ~ ~  [ ( d i d ~ + 6 d ~ + 6 d i + ~  + d t d f d i d : + 6  +HC) 
i. 6 

Because E and U always appear within the combination EO, we can define E'  = EU and 
take E' and q as the expansion parameters. This procedure is equivalent to the following 
two kinds of expansion: 

E e l  Ve l  f= O(1) t = O(1) a = O(1) (43) 

O < l  q < l  f =  O(1) 5 = O(1) E = O(1). (44) 

Equation (43) corresponds to the semiclassical approximation and the long-wave 
approximation used in this paper. Equation (44) corresponds to the small-amplitude 
approximation and the long-wave approximation. It is easy to see that the equation 
which d j  satisfies will still be (14) with E and uj being substituted by E' and d j .  The reason 
is that the Hamiltonian (42) has the same form as (11). 

In summary, we have studied soliton excitations in a ID Heisenberg ferromagnet 
using the HP transformation and Glauber's coherent-state representation. Writing the 
Hamiltonian in the dimensionless form, the equation of motion is transformed into 
the power series of E and q in the semiclassical approximation and in the long-wave 
approximation. We have shown that the relative ratio of E to q is important for the 
determination of the modified Schrodinger equation. The soliton solutions are given in 
three cases which correspond to different physical conditions of the system. The results 
obtained by Pushkarov and Pushkarov, de Azevedo et a1 and Skrinjar et a1 may be 
included in our approach. The idea is generated from the theory of non-linear long waves 
in shallow water. The physical application of the approach given here will be discussed 
in a future publication. 
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Appendix 

Here we use the method of multiple scales (Taniuti andNishihara 1983) to solve equation 
(24): 
i a ,  + Aa + Ba,y, + Caxxxx + D / a 1 2 a  

+E[-a~a,12+~a*(a,)2--a2ax*] = 0 
where 

A = -pf B = JS,a2 C = JSca4/2 

D = - JSc/4S2 E = -JSca2/S. (4 

E = P(X - C,t) (A31 

t = p*t  (A4) 

a = pa( ’ )  + p2&) + p3a(3) + , . . (Aj) 

For weak non-linear waves with dispersion, we can introduce the slow variables 

and asymptotic expansion 

where p is a small parameter denoting the relative amplitude of the waves. C, = d w/d k 
is the group velocity of the linear waves. From (A3) and A(4) we have the derivative 
expansions (Nayfeh 1973) 

alax = a/ax + palaf  

a/& = a / a t  - pc,a/aE + p2a/at. 

Then we can solve these equations step by step. 
For j = 1 we obtain the linear approximation solution 

a(l) = U ( 5 ,  t )  exp[i(kx - o t ) ]  

o = pf + a2JSck2 - JS,a4k4/12 

where U(E, z) is an undetermined function. When j = 2, we have the second-order 
approximation equation. It is easy to get 

a(2) = V(E, z) exp[i(kx - o t ) ]  

C, = dw/dk = 2JSca2k - JSca4k3/3 
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where u ( E ,  t) is another undetermined function. The third-order ( j  = 3) approximation 
equation is 

imi3) + A d 3 )  + Ba::) + Ca::;',?, 

= - [iU, + ( B  - 6Ck2)UEE + ( D  - 2Ek2)IU12 U ]  

x exp[i(kx - ut)] + higher-order harmonic term. 

In order to eliminate the secular terms in d3) ,  we must let 

iU, + ( B  - 6Ck2)UEE + ( D  - 2Ek2)IU/*U = 0. 

This is the non-linear Schrodinger equation given in (25). 
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